Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases

Author:

Eguchi Hiroshi1ORCID,Hiura Akio2,Nakagawa Hiroshi3,Kusaka Shunji1,Shimomura Yoshikazu4

Affiliation:

1. Department of Ophthalmology, Kindai University Sakai Hospital, Osaka, Japan

2. Department of Oral Histology, School of Dentistry, Tokushima University, Tokushima, Japan

3. Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima University, Tokushima, Japan

4. Department of Ophthalmology, Kindai University, Osaka, Japan

Abstract

Recently, in vivo confocal microscopy is used to examine the human corneal nerve fibers morphology. Corneal nerve fiber architecture and its role are studied in healthy and pathological conditions. Corneal nerves of rats were studied by nonspecific acetylcholinesterase (NsAchE) staining. NsAchE-positive subepithelial (stromal) nerve fiber has been found to be insensitive to capsaicin. Besides, NsAchE-negative but capsaicin-sensitive subbasal nerve (leash) fibers formed thick mesh-like structure showing close interconnections and exhibit both isolectin B4- and transient receptor potential vanilloid channel 1- (TRPV1-) positive. TRPV1, TRPV3, TRPA (ankyrin) 1, and TRPM (melastatin) 8 are expressed in corneal nerve fibers. Besides the corneal nerve fibers, the expressions of TRPV (1, 3, and 4), TRPC (canonical) 4, and TRPM8 are demonstrated in the corneal epithelial cell membrane. The realization of the importance of TRP channels acting as polymodal sensors of environmental stresses has identified potential drug targets for corneal disease. The pathophysiological conditions of corneal diseases are associated with disruption of normal tissue innervation, especially capsaicin-sensitive small sensory nerve fibers. The relationships between subbasal corneal nerve fiber morphology and neurotrophic keratopathy in corneal diseases are well studied. The recommended treatment for neurotrophic keratopathy is administration of preservative free eye drops.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3