Vehicle Type Recognition Combining Global and Local Features via Two-Stage Classification

Author:

Sun Wei12ORCID,Zhang Xiaorui23,Shi Shunshun1,He Jun4,Jin Yan1

Affiliation:

1. School of Information and Control, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China

3. School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

This study proposes a new vehicle type recognition method that combines global and local features via a two-stage classification. To extract the continuous and complete global feature, an improved Canny edge detection algorithm with smooth filtering and non-maxima suppression abilities is proposed. To extract the local feature from four partitioned key patches, a set of Gabor wavelet kernels with five scales and eight orientations is introduced. Different from the single-stage classification, where all features are incorporated into one classifier simultaneously, the proposed two-stage classification strategy leverages two types of features and classifiers. In the first stage, the preliminary recognition of large vehicle or small vehicle is conducted based on the global feature via a k-nearest neighbor probability classifier. Based on the preliminary result, the specific recognition of bus, truck, van, or sedan is achieved based on the local feature via a discriminative sparse representation based classifier. We experiment with the proposed method on the public and established datasets involving various challenging cases, such as partial occlusion, poor illumination, and scale variation. Experimental results show that the proposed method outperforms existing state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3