Affiliation:
1. School of Mechanical Engineering, Key Laboratory of Manufacturing Equipment Mechanism Design and Control of Chongqing, Chongqing Technology and Business University, Chongqing 400067, China
Abstract
A multimodal medical image fusion algorithm based on multiple latent low-rank representation is proposed to improve imaging quality by solving fuzzy details and enhancing the display of lesions. Firstly, the proposed method decomposes the source image repeatedly using latent low-rank representation to obtain several saliency parts and one low-rank part. Secondly, the VGG-19 network identifies the low-rank part’s features and generates the weight maps. Then, the fused low-rank part can be obtained by making the Hadamard product of the weight maps and the source images. Thirdly, the fused saliency parts can be obtained by selecting the max value. Finally, the fused saliency parts and low-rank part are superimposed to obtain the fused image. Experimental results show that the proposed method is superior to the traditional multimodal medical image fusion algorithms in the subjective evaluation and objective indexes.
Funder
Chongqing Technology and Business University
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献