Abnormal User Detection Based on the Correlation Probabilistic Model

Author:

Yang Xiaohui1ORCID,Sun Ying1ORCID

Affiliation:

1. School of Cyber Security and Computer, Hebei University, Baoding, China

Abstract

As an important part of the new generation of information technology, the Internet of Things (IoT), which is developing rapidly, requires high user security. However, malicious nodes located in an IoT network can influence user security. Abnormal user detection and correlation probability analysis are fundamental and challenging problems. In this paper, the probabilistic model of the correlation between abnormal users (PMCAU) is proposed. First, the concept of user behavior correlation degree is proposed, which is defined as two parts: user attribute similarity degree and behavior interaction degree; the attribute similarity measurement algorithm and behavior correlation measurement algorithm are constructed, respectively, and the spontaneous and interactive behaviors of users were analyzed to determine the abnormal correlated users. Second, first-order logic grammar is used to express the before and after connection of user behavior and to deduce the probabilistic of occurrence of the correlation of behavior and determine the abnormal user groups. Experimental results show that, compared with the traditional anomaly detection algorithm and Markov logic network, this model can identify the users correlated with anomalies, make probabilistic inferences on the possible associations, and identify the potential abnormal user groups, thus achieving higher accuracy and predictability in the IoT.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Node Classification Based on Joint Weighted Node Vectors;Journal of Applied Mathematics and Physics;2024

2. Identity Authentication Methods Based on User Profiling;Lecture Notes in Computer Science;2024

3. Security and Privacy on IoMT;Advances in Intelligent Systems and Computing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3