Data Association Methods via Video Signal Processing in Imperfect Tracking Scenarios: A Review and Evaluation

Author:

Li Hui1ORCID,Liu Yapeng1ORCID,Lin Wenzhong2,Xu Lingwei12ORCID,Wang Junyin1ORCID

Affiliation:

1. School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China

2. Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350108, China

Abstract

In 5G scenarios, there are a large number of video signals that need to be processed. Multiobject tracking is one of the main directions in video signal processing. Data association is a very important link in tracking algorithms. Complexity and efficiency of association method have a direct impact on the performance of multiobject tracking. Breakthroughs have been made in data association methods based on deep learning, and the performance has been greatly improved compared with traditional methods. However, there is a lack of overviews about data association methods. Therefore, this article first analyzes characteristics and performance of three traditional data association methods and then focuses on data association methods based on deep learning, which is divided into different deep network structures: SOT methods, end-to-end methods, and Wasserstein metric methods. The performance of each tracking method is compared and analyzed. Finally, it summarizes the current common datasets and evaluation criteria for multiobject tracking and discusses challenges and development trends of data association technology and data association methods which ensure robust and real time need to be continuously improved.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3