Evaluating the Effect of Cement and ARG Fiber on the Mechanical and Microstructural Properties of Dune Sand

Author:

Shalabi Faisal I.1ORCID,Mazher Javed2ORCID,Khan Kaffayatullah3ORCID,Amin Muhammad Nasir3ORCID,Alqahtani Mesfer3ORCID,Awad Hosam3ORCID,Alghannam Ali3ORCID,Albaqshi Hussain3ORCID

Affiliation:

1. Department of Civil Engineering, Hijjawi for Engineering Technology, Yarmouk University, Irbid, Jordan

2. Physics Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia

3. Department of Civil Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia

Abstract

Despite its collapsible nature and weakness, desert sand can be used for construction purposes all over the world if properly stabilized. Therefore, the aim of this study is to evaluate the effectiveness of cement and fiber in stabilizing locally available dune sand. A test plan was used to investigate the effects of varying quantities of alkali resistance glass (ARG) fiber (F: 0%, 0.2%, 0.4%, and 0.6%) and portland cement (C: 0.0%, 1.0%, 3.0%, and 5.0%) on the mechanical and microstructural properties of dune sand. Mechanical properties such as unconfined strength (UCS), strain at failure (εf), California bearing ratio (CBR), and modulus of elasticity (Es) were evaluated, and microstructure properties were investigated using Raman spectrum and laser-scanning microscopy (LSM) tests on stabilized sand samples. The results of the experimental study showed that the percentage of cement in the treated sand has a more significant impact on the investigated properties of the treated sand than the percentage of fibers. In addition, increasing fiber content results in an increase in the ductility of the sand mix. Raman analysis revealed significant interactions between sand mix components. Moreover, LSM results showed that fiber–cement interaction increased with increasing cement percentage, as calcium silicate hydrates (CSH) formed in the mix and filamentous and intrastrand binding occurred. The findings of this study indicate that ARG fiber and cement can be effective in the stabilization of dune sand for construction purposes even with the use of low percentages of ARG fiber (0.2%–0.4%) and cement (3%).

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3