Modelling Land Surface Temperature Variation in New Guinea Island from 2000 to 2019 Using a Cubic Spline Model

Author:

Munawar Munawar12ORCID,McNeil Rhysa13ORCID,Prasetya Tofan Agung Eka4ORCID,Jani Rohana5ORCID,McNeil Don1ORCID,Pongsiri Nitinun1ORCID

Affiliation:

1. Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand

2. Faculty of Mathematics and Science, Syiah Kuala University, Banda Aceh, Indonesia

3. Centre of Excellence in Mathematics, Commission on Higher Education (CHE), Ministry of Education, Ratchathewi, Bangkok, Thailand

4. Health Department, Vocational Faculty, Universitas Airlangga, Surabaya, Indonesia

5. Department of Decision Science, Faculty of Business and Economics, Universiti Malaya, Kuala Lumpur, Malaysia

Abstract

Land surface temperature (LST) is a critical indicator variable in climate science. In this study, the variation of LST on the island of New Guinea during 2000 to 2019 was investigated using a cubic spline model and a multivariate regression model. The data were obtained from the National Aeronautics and Space Administration moderate resolution imaging spectroradiometer database. This study focused on 90 subregions with 105-pixels of latitude 90 kilometer apart. These subregions were categorized into 10 super-regions. The results showed that the mean change in LST for all 90 subregions was +0.086°C per decade with a confidence interval of (0.028, 0.144)oC. There were five super-regions with a significant mean LST change. LST increased significantly in the central-north, central-south of the island (super-regions B1, C1, and C2 with 0.117°C, 0.162°C, and 0.185°C, respectively) and the southern part of Papua New Guinea (super-region E2 with 0.217°C), whereas it decreased in the middle part of the Indonesian territories (A2 with −0.122°C). The results also showed that LST variation occurs at the subregional level. Climate change mitigation methods are critical for reducing temperature rise and limiting any negative effects on the region.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3