Partial‐Model‐Based Damage Identification of Long‐Span Steel Truss Bridge Based on Stiffness Separation Method

Author:

Xiao FengORCID,Mao Yuxue,Tian Geng,Chen Gang S.

Abstract

Damage detection in bridge structures has always been challenging, particularly for long‐span bridges with complex structural forms. In this study, a partial‐model‐based damage detection method was proposed for the damage identification of long‐span steel truss bridges. The proposed method employs partial models to estimate the parameters using the stiffness separation method. This approach obviates the need to construct complete stiffness information for the structure. In contrast, it depends solely on the arrangement of the structural members and material information in the recognized area. This technique can effectively circumvent the construction of an overall structural model and reduce the complexity of damage identification in large structures. A full‐scale long‐span steel truss bridge in service was used to illustrate the feasibility of the proposed method. The locations of the three partial models were considered in the model analysis, and the parameter estimation efficiency of the Nelder–Mead simplex and quasi‐Newton algorithms were compared.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3