Mathematical Analysis of Malaria Epidemic: Asymptotic Stability With Cost‐Effectiveness Study

Author:

Nana-Kyere SacrificeORCID,Seidu BabaORCID,Nantomah KwaraORCID

Abstract

Malaria is an old, curable vector‐borne disease that is devastating in the tropics and subtropical regions of the world. The disease has unmatched complications in the human host, especially in children. Mathematical models of infectious diseases have been the steering wheel, driving scientists towards elucidation of the dynamic behaviour of epidemics and providing tailored strategic management of diseases. With the ongoing vaccination programs for vector‐borne diseases, the research proposes a nonlinear differential equation model for the malaria disease that provides public health with a shift from the classical understanding of nonpharmaceutical preventive malaria control to pharmaceutical measures of vaccines. The asymptotic dynamic behaviour of the model is studied at the model’s equilibria. The bifurcation type invoked at the disease‐free state is analysed, and the result revealed that the convention that is the condition for eradicating the disease is not always sufficient when the system undergoes backward bifurcation. Furthermore, sensitivity analysis was investigated to quantify the amount of influence each parameter has on . With the Latin hypercube sampling and partial rank correlation coefficient method, the uncertainty in is computed with a 95% confidence interval, with the mean, and 5th and 95th percentiles, respectively, simulated as 0.143788, 0.01545, and 0.41491. An intervention model was derived from the nonintervention model to experiment with and evaluate the respective effects of the various pairings of interventions on the dynamics of the disease. Lastly, an in‐depth cost analysis was studied to identify the most cost‐effective intervention regarding rewarding the desired outcome. From the analysis, we recommend that besides the nonpharmaceutical measure of bed nets and insecticide spray, public health should target the pharmaceutical intervention of vaccine as it can close the gap in malaria prevention.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3