Predictive Models for Suicide Attempts in Major Depressive Disorder and the Contribution of EPHX2: A Pilot Integrative Machine Learning Study

Author:

Zheng Shuqiong123ORCID,Zeng Weixiong4,Wu Qianyun123,Li Weimin123,He Zilong4,Li Enze123,Tang Chong123,Xue Xiang123,Qin Genggeng4ORCID,Zhang Bin123ORCID,Yin Honglei5ORCID

Affiliation:

1. Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China

2. Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China

3. Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China

4. Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China

5. Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China

Abstract

Suicide is a major public health problem caused by a complex interaction of various factors. Major depressive disorder (MDD) is the most prevalent psychiatric disorder associated with suicide; therefore, it is essential to prioritize suicide prediction and prevention within this population. Integrated information from different dimensions, including personality, cognitive function, and social and genetic factors, is necessary to improve the performance of predictive models. Besides, recent studies have indicated the critical roles for EPHX2/P2X2 in the pathophysiology of MDD. Our previous studies found an association of EPHX2 and P2X2 with suicide in MDD. This study is aimed at (1) establishing predictive models with integrated information to distinguish MDD from healthy volunteers, (2) estimating the suicide risk of MDD, and (3) determining the contribution of EPHX2/P2X2. This cross-sectional study was conducted on 472 prospectively collected participants. The machine learning (ML) technique using Extreme Gradient Boosting (XGBoost) classifier was employed to evaluate the performance and relative importance of the extracted characteristics in recognising patients with MDD and depressed suicide attempters (DSA). In independent validation set, the model with clinical and cognitive information could recognise MDD with an area under the receiver operating characteristic curve (AUC) of 0.938 (95% confidence interval (CI), 0.898–0.977), and genetic information did not improve classification performance. The model with clinical, cognitive, and genetic information resulted in a significantly higher AUC of 0.801 (95% CI, 0.719–0.884) for identifying DSA than the model with only clinical information, in which the three single nucleotide polymorphisms of EPHX2 showed important roles. This study successfully established step-by-step predictive ML models to estimate the risk of suicide attempts in MDD. We found that EPHX2 can help improve the performance of suicidal predictive models. This trial is registered with NCT05575713.

Funder

Southern Medical University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3