Analysis on Precipitable Water Vapor over the Tibetan Plateau Using FengYun-3A Medium Resolution Spectral Imager Products

Author:

Gong Shaoqi123ORCID,Hagan Daniel F. T.1,Zhang Cunjie24ORCID

Affiliation:

1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China

2. National Climate Center, China Meteorological Administration, Beijing 100081, China

3. NUIST-UoR International Research Institute, Nanjing 210044, China

4. Key laboratory for Cloud Physics of China Meteorological Administration, Beijing 100081, China

Abstract

The Tibetan Plateau is the largest and highest plateau in the world, and its complex terrain affects the distribution of precipitable water vapor (PWV) in the atmosphere, which plays an important role in the weather and climate of East Asia. In this paper, the characteristics of PWV over the Tibetan Plateau are studied using the FengYun-3A Medium Resolution Spectral Imager (MERSI) water vapor products, which are retrieved from the MERSI raw images of Chinese second-generation polar orbit meteorological satellite. Firstly, the accuracy of the MERSI 5-minute water vapor product is validated using three referenced water vapor data from TERRA/MODIS, ground-based GPS, and AERONET sun photometer over the Tibetan Plateau. Then, the spatial distribution and seasonal variation of PWV over the plateau are analyzed, and the effects of topographic factors on PWV are discussed. The results indicate that the MERSI 5-minute water vapor product has a good accuracy over the Tibetan Plateau, which the mean absolute error of MERSI water vapor product is in the range of 28.91%-37.54%, the mean absolute error range between 1.87 and 2.76 millimeter (mm), and the mean bias is between -1.14 and 0.64 mm comparing three referenced data. The PWV content appears as a typical spatial pattern over the Tibetan Plateau where there is a decrease from east to west of the Tibetan Plateau with increasing elevation, with the highest values over the south of Tibet. A second pattern also appears over the eastern part of the Tibetan Plateau, where the PWV content in the Qaidam Basin and the south of Tarim Basin are also considerably high. The seasonal variation of PWV content over the Tibetan Plateau presents to be highest in summer, followed by autumn and spring, and lowest in winter. The PWV content changes periodically during the year, which fits with a quadratic polynomial over monthly scales. The topographical factors of the Tibetan Plateau were found to affect the water vapor, where the altitude and latitude are negatively correlated with water vapor, while the slope and longitude show a positive correlation with water vapor; however, the aspect does not appear to have any significant influence on water vapor.

Funder

NUIST-UoR International Research Institute

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3