Graph-Based Node Finding in Big Complex Contextual Social Graphs

Author:

Wu Keshou1,Liu Guanfeng2ORCID,Lu Junwen1ORCID

Affiliation:

1. Engineering Research Center for Software Testing and Evaluation of Fujian Province, Xiamen University of Technology, Xiamen, China

2. Department of Computing, Macquarie University, NSW 2109, Australia

Abstract

Graph pattern matching is to find the subgraphs matching the given pattern graphs. In complex contextual social networks, considering the constraints of social contexts like the social relationships, the social trust, and the social positions, users are interested in the top-K matches of a specific node (denoted as the designated node) based on a pattern graph, rather than the entire set of graph matching. This inspires the conText-Aware Graph pattern-based top-K designated node matching (TAG-K) problem, which is NP-complete. Targeting this challenging problem, we propose a recurrent neural network- (RNN-) based Monte Carlo Tree Search algorithm (RN-MCTS), which automatically balances exploring new possible matches and extending existing matches. The RNN encodes the subgraph and maps it to a policy which is used to guide the MCTS. The experimental results demonstrate that our proposed algorithm outperforms the state-of-the-art methods in terms of both efficiency and effectiveness.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3