Bearing Fault Classification Using Improved Antlion Optimizer and Extreme Learning Machine

Author:

Zhao Zhuanzhe12ORCID,Zhang Yu1,Ma Qiang1,Rui Yujian1ORCID,Ye Guowen1,Wang Mengxian1,Liu Yongming13ORCID,Zhang Zhen12,Wei Neng2,Tu Zhijian2

Affiliation:

1. School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China

2. Wuhu Ceprei Robotics Industry Technology Research Institute Co. Ltd., Wuhu, Anhui 241003, China

3. Anhui New R&D Institutions of Human-machine Interaction and Collaboration, Wuhu, Anhui 241000, China

Abstract

Bearing is an important part of rotating machinery, and its early fault diagnosis and accurate classification have always been difficult in engineering application. At present, the models based on the fusion of various optimization algorithms and neural networks have become one of the emerging techniques for accurate fault identification. Firstly, an improved antlion optimizer (ALO) algorithm based on estimation of distribution algorithm (EDA) and variable-step Lévy flight strategy, abbreviated as ELALO, is proposed as a new bionic intelligence. During the initialization of population, the individuals with poor fitness are redistributed by the Gaussian probability model. In view of the stagnation of iteration, Lévy flight strategy is introduced and the adaptive change of disturbance step length is controlled. Experimental results on 4 benchmark functions show that the novel ELALO can effectively improve the solution accuracy and convergence speed, compared with the original ALO. Secondly, in order to solve the disadvantage that extreme learning machine (ELM) network is easy to fall into local optimization, this ELALO algorithm is used to initialize the weights and thresholds of its network and to form the new pattern recognition model, ELALO-ELM. Finally, the bearing data of 8 patterns from Western Reserve University are decomposed by local mean decomposition (LMD), and then the symbolic entropy (SE) of the first three product function (PF) components signals is extracted and used as the input eigenvectors. Compared with the standard ELM and ALO-ELM models, the ELALO-ELM model has better generalization and stronger robustness and it can effectively improve the efficiency of network training and the accuracy of early fault pattern classification in bearing fault diagnosis. The new ELALO-ELM model can also be used for other difficult classification problems.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3