Cuproptosis-Related LncRNA Signature for Predicting Prognosis of Hepatocellular Carcinoma: A Comprehensive Analysis

Author:

Chen Qiqi1,Sun Tong2,Wang Guorong1,Zhang Mengyu3,Zhu Yitian1,Shi Xiaonan1,Ding Zhishan2ORCID

Affiliation:

1. The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China

2. School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China

3. Hangzhou Medical College, Hangzhou 310053, China

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and has a poor prognosis. Cuproptosis is a novel mode of cell death that has only recently been discovered. Considering the critical role of lncRNAs in liver cancer development, the aim of this study was to construct a prognostic signature based on cuproptosis-related lncRNAs (CRlncRNAs). We downloaded RNA-sequencing data and corresponding clinical information of patients with HCC from The Cancer Genome Atlas (TCGA) database. To verify the robustness of the model, we added an external validation set obtained from the Gene Expression Omnibus (GEO): GSE40144. In addition, we identified the cuproptosis-related genes (CRGs) based on previous reports. Pearson correlation analysis, univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were utilized to screen for genes associated with prognosis. On this basis, multivariate Cox regression and stepAIC were used to further construct and optimize the prognostic model. The simplified signature with the lowest Akaike information criterion (AIC) value was considered the prognostic signature. Seven different algorithms were used to perform immune infiltration analysis. The single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm was utilized to find the difference in immune function between the high- and low-risk groups. Finally, in vitro experiments were performed by quantitative real-time PCR (qRT–PCR) analysis using HCC cell lines to validate the expression of prognostic genes. We identified 3 lncRNAs (CYTOR, LINC00205, and LINC01184) as independent risk factors for HCC. The receiver operating characteristic (ROC) curves calculated that the AUC at 1, 3, and 5 years reached 0.717, 0.633, and 0.607, respectively. The expression levels of 41 immune checkpoints differed significantly between the high- and low-risk groups, and there were significant differences in sensitivity to immunotherapy between the high- and low-risk groups. The risk model could also serve as a promising predictor of immunotherapeutic response, which has been verified by the TIDE algorithm ( p < 0.001 ). Overall, we propose a signature related to CRlncRNAs that can be used to predict the prognosis of HCC patients, which was validated in external cohort and in vitro experiments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3