Common Fixed Point Results for Intuitionistic Fuzzy Hybrid Contractions with Related Applications

Author:

Shagari Mohammed Shehu1ORCID,Kanwal Shazia2ORCID,Azam Akbar3,Aydi Hassen456ORCID,Gaba Yaé Ulrich678ORCID

Affiliation:

1. Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

2. Department of Mathematics, Government College University, Faisalabad, Pakistan

3. Department of Mathematics, Grand Asian University, Sialkot, 7KM, Pasrur Road, Sialkot 51310, Pakistan

4. Institut Supérieur D’Informatique et des Techniques de Communication, Université de Sousse, Sousse 4000, Tunisia

5. China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

6. Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa

7. Quantum Leap Africa (QLA), AIMS Rwanda Centre, Remera Sector KN 3, Kigali, Rwanda

8. African Center for Advanced Studies (ACAS), P.O. Box 4477, Yaoundé, Cameroon

Abstract

Over time, hybrid fixed point results have been examined merely in the framework of classical mathematics. This one way research has clearly dropped-off a great amount of important results, considering the fact that a fuzzy set is a natural enhancement of a crisp set. In order to entrench hybrid fixed notions in fuzzy mathematics, this paper focuses on introducing a new idea under the name intuitionistic fuzzy p -hybrid contractions in the realm of -metric spaces. Sufficient conditions for the existence of common intuitionistic fuzzy fixed points for such maps are established. In the instance where our presented results are slimmed down to their equivalent nonfuzzy counterparts, the concept investigated herein unifies and generalizes a significant number of well-known fixed point theorems in the setting of both single-valued and multivalued mappings in the corresponding literature. A handful of these special cases are highlighted and analysed as corollaries. A nontrivial example is put together to indicate that the hypotheses of our results are valid.

Funder

African Institute for Mathematical Sciences

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3