Affiliation:
1. School of Financial Technology, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
2. Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438, China
3. Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China
Abstract
Microgrids allow energy exchange among multiple interconnected microgrids for greater energy efficiency and collective economic interest. However, in some cases, the benefit of some microgrids within the network may not be uncertain. In view of the increasing development of electric vehicles (EVs), a multiobjective model is proposed to improve the performance of microgrids by integrating electric vehicles-to-grid (V2G) and vehicles-to-building (V2B) based on global and individual benefit balance. Two reference models are built to verify the validity of the proposed method, and models are formulated as mixed integer linear programming formats solved by the weighting method. A set of parameters of microgrids are adopted to model the driver behaviors (e.g., available hours of EV), energy transactions (e.g., electricity), performance factor (e.g., emission factor), distributed energy (e.g., solar panel), and energy load of five commercial buildings (e.g., hotel) located in Shanghai. Simulation results demonstrate the effectiveness of the operation decision models in the energy management of microgrids under neutral, proeconomic, proenvironmental, and proenergy weighting scenarios. The case study results specify that the proposed method can achieve operational cost, CO2 emission, and primary energy consumption reductions for each microgrid, with total benefits declining slightly.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献