Affiliation:
1. School of Information, Liaoning University, Shenyang 110036, China
2. School of Physics, Liaoning University, Shenyang 110036, China
Abstract
Due to its openness and simplicity, Modbus TCP has wide applications to facilitate the actual management and control in industrial wireless fields. However, its potential security vulnerabilities can also create lots of complicated information security challenges, which are increasingly threatening the availability of industrial real-time traffic delivery. Although anomaly detection has been recognized as a workable security measure to identify attacks, the critical step to successfully extract data characteristics is an extremely difficult task. In this paper, we focus on the continuous control mode in industrial processes and propose a control tracing feature algorithm to extract the function-driven tracing characteristics from Modbus TCP data traffic. Furthermore, this algorithm can flexibly integrate the time factor with critical functional operations and adequately describe the dynamic control change of technological processes. To closely cooperate with this algorithm, one optimized SVM (support vector machine) classifier is introduced as the practicable decision engine. By designing one applicable attack mode, we develop an in-depth and meticulous analysis on the decision accuracy, and all experimental results clearly explain that the extracted features can strongly reflect the changing pattern of continuous functional operations, and the proposed algorithm can effectively cooperate with the optimized SVM classifier to distinguish abnormal Modbus TCP data traffic.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献