Comparative Agreement Analysis of Differences in 1,5-Anhydroglucitol, Glycated Albumin, and Glycated Hemoglobin A1c Levels between Fasting and Postprandial States in Steamed Bread Meal Test

Author:

Su Hang1ORCID,Wang Yufei1ORCID,Ma Xiaojing1ORCID,He Xingxing1ORCID,Ying Lingwen1ORCID,Tang Junling1,Dong Lu1ORCID,Bao Yuqian1ORCID,Zhou Jian1ORCID,Jia Weiping1ORCID

Affiliation:

1. Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China

Abstract

Background. Our previous study indicated that serum 1,5-anhydroglucitol (1,5-AG) levels slightly increased after a glucose load; therefore, this study was conducted to explore short-term changes in 1,5-AG levels after a steamed bread meal test (SBMT) and compare the agreement of 1,5-AG, glycated albumin (GA), and glycated hemoglobin A1c (HbA1c) levels between fasting and postprandial states after an SBMT. Methods. 104 participants were recruited and underwent a 100 g SBMT. Fasting, 30 min, and 120 min of 1,5-AG, GA, and HbA1c were measured. Results. Levels of 1,5-AG slightly increased from 30 to 120 min after an SBMT (P<0.01), and HbA1c and GA levels showed stability at 30 and 120 min. The Passing-Bablok regression linear equation showed that postprandial 1,5-AG, GA, and HbA1c levels were well fitted (all P>0.05), and Bland-Altman difference plot showed that 100% of data points for HbA1c30 and HbA1c120 fell within the limits of agreement; 94.2%, 96.2%, 95.2%, and 95.2% of data points for 1,5-AG30, 1,5-AG120, GA30, and GA120 fell within the limits of agreement, respectively. Conclusion. Agreement analyses indicated good stability of 1,5-AG, GA, and HbA1c levels after the SBMT. HbA1c had an optimal stability, which was superior to that of GA or 1,5-AG.

Funder

Shanghai Municipal Commission of Health and Family Planning General Program

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3