Effects of Water Inrush from Tunnel Excavation Face on the Deformation and Mechanical Performance of Shield Tunnel Segment Joints

Author:

Zhao Tingsheng1,Liu Wen1ORCID,Ye Zhi1ORCID

Affiliation:

1. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Hongshan District, Wuhan 430074, China

Abstract

Water inrush from the excavation face often occurs in the current shield construction of metro tunnels. In this study, the discontinuity of shield tunnel lining and the interaction between the tunnel segments, the grouting layer, and the surrounding rock are considered. Based on the 3D nonlinear contact theory, a hybrid model of the shield tunnel is constructed. Considering the fluid-solid coupling effect of water and soil, the influences of different water head differences on the mechanical performance and deformation of segments and joints in the shield tunnel are studied. The water gushing from the excavation face leads to vertical convergence of the cross-sectional area of the shield tunnel, and joint opening and dislocation result in sharp decrease of the waterproof capacity of joints. Meanwhile, the stress in the vicinity of segment joints increases sharply, and local cracks occur in the segment lining. The axial force, shear force, and bending moment in the joint bolt are also significantly increased. Based on the current metro standard and the computational results in this study, an emergency control criterion is put forward by means of controlling the discharge of water: the water head difference over the excavation face is required less than 4.6 M.

Funder

National key R&D Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3