Theoretical Comparison between the Flicker Noise Behavior of Graphene and of Ordinary Semiconductors

Author:

Macucci Massimo1ORCID,Marconcini Paolo1ORCID

Affiliation:

1. Dipartimento di Ingegneria dell’Informazione, Universita di Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy

Abstract

Graphene is a material of particular interest for the implementation of sensors, and the ultimate performance of devices based on such a material is often determined by its flicker noise properties. Indeed, graphene exhibits, with respect to the vast majority of ordinary semiconductors, a peculiar behavior of the flicker noise power spectral density as a function of the charge carrier density. While in most materials flicker noise obeys the empirical Hooge law, with a power spectral density inversely proportional to the number of free charge carriers, in bilayer, and sometimes monolayer, graphene a counterintuitive behavior, with a minimum of flicker noise at the charge neutrality point, has been observed. We present an explanation for this stark difference, exploiting a model in which we enforce both the mass action law and the neutrality condition on the charge fluctuations deriving from trapping/detrapping phenomena. Here, in particular, we focus on the comparison between graphene and other semiconducting materials, concluding that a minimum of flicker noise at the charge neutrality point can appear only in the presence of a symmetric electron-hole behavior, a condition characteristic of graphene, but which is not found in the other commonly used semiconductors.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3