Asymptotic Method and Numerical Analysis for Self-Excited Vibration in Rolling Mill with Clearance

Author:

Li Hongguang1,Wen Bangchun2,Zhang Jianwu1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China

2. School of Mechanical Engineering, Northeastern University, Shenyang, 110006, China

Abstract

In this paper, a dynamic model is proposed for analysis of nonlinear vibrations of rolling mills with fixed and time-varying clearances. Self-excited vibrations of the system that is basically involved with piece-wise nonlinearity and discontinuities are investigated via asymptotic method. It is shown by numerical results obtained for the nonlinear system with a time-varying clearance that different forms of nonlinear vibrations appear to be periodic, quasi-periodic and chaotic. Influence of the system parameters on the nonlinear vibration behaviors is examined by applying the Poincare sections, the bifurcation diagram and the largest Lyapunov exponent. New phenomena are observed in nonlinear motions of the rolling mill mechanism and are of significant importance for design of this type of mechanical systems.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3