Mine Microseismic Signal Denoising Based on a Deep Convolutional Autoencoder

Author:

Hu Ting12ORCID,Xu Bin2ORCID,Wang Yongfa2ORCID,Zhu Jiayi2ORCID,Zhou Jiang1ORCID,Wan Zhongyi1ORCID

Affiliation:

1. Southwest Jiaotong University Hope College, Chengdu 610400, China

2. Chengdu University of Technology, Geomathematics Key Laboratory of Sichuan Province, Chengdu 610059, China

Abstract

Mine microseismic signal denoising is a basic and crucial link in microseismic data processing, which influences the accuracy and reliability of the monitoring system, and is of great significance with regard to safety during mining. Therefore, this study introduces a deep learning method to improve the mapping function and sparsity of signals in the time-frequency domain and constructs a denoising framework based on a deep convolutional autoencoder to address the denoising problem of mine microseismic signals. First, all noisy microseismic signals are normalized to ensure the nonlinear expression ability of the constructed denoising framework. Then, the normalized signals are transformed into the time-frequency domain using the short-time Fourier transform (STFT), and the real and imaginary parts of time-frequency coefficients serve as the input of the deep convolutional autoencoder to output the masks of the effective and noise signals. Next, these masks are applied to the time-frequency coefficients of the noisy microseismic signals, and the time-frequency coefficients of the potentially effective and noise signals are estimated. Finally, inverse STFT is used to transform these time-frequency coefficients to the time domain to obtain the final denoised effective and noise signals. The constructed framework automatically learns rich features from synthetic data to separate the effective and noise signals, thereby achieving the purpose of fast and automatic denoising. The experimental results show that compared with the wavelet threshold and ensemble empirical mode decomposition, the denoising framework considerably improves the signal-to-noise ratio of mine microseismic signals with less waveform distortion. Moreover, it can achieve a better denoising effect efficiently even in the case of a low SNR, which has obvious advantages. The constructed denoising framework is suitable for microseismic monitoring signals of various mine dynamic disasters and provides strong technical support for intelligent monitoring and early warning concerning production risks in mines.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3