Affiliation:
1. Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan
Abstract
The effects of the ice microphysical processes on the development of weak vortices and tropical cyclones (TCs) are examined by numerical experiments with a nonhydrostatic model. Since it has been understood that the ice phase generally enhances the eyewall circulation in strong TCs because of additional heat release and insignificant effect of rainwater evaporation, this study focuses on the development of relatively weak vortices and TCs. Some past studies showed that the development is slower by the effects of the ice phase through cooling due to the melting of snow and graupel, whereas this study indicates that cooling due to evaporation of rainwater in the subcloud layer plays a much more important role in the slower development, and much more solid substances in the mid-troposphere, which are produced through the ice phase processes, contribute to more rainwater evaporation in the subcloud layer. The relative importance of many processes of the ice microphysics is also examined as a basis for future improvements of parameterization of the microphysical processes.
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献