Niacin Protects against Butyrate-Induced Apoptosis in Rumen Epithelial Cells

Author:

Luo Dan1ORCID,Peng Zhipeng2,Yang Le3,Qu Mingren1,Xiong Xiaowen1,Xu Lanjiao1,Zhao Xianghui1,Pan Ke1,Ouyang Kehui1ORCID

Affiliation:

1. Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China

2. Menon Animal Nutrition Technology Co. Ltd., Shanghai 201800, China

3. Kaihua County Animal Husbandry and Veterinary Bureau, Quzhou 324000, China

Abstract

The effects and underlying mechanisms of butyrate and butyrate+niacin on apoptosis in sheep rumen epithelial cells were investigated. Cells were exposed to butyrate (0–140 mM) for 6 h. A low concentration (20 mM) of butyrate increased cell viability and promoted growth whereas high concentrations (40–140 mM) inhibited proliferation. Cells were then cocultured with 120 mM butyrate and niacin (0–100 mM) for 6 h. Niacin addition attenuated butyrate-induced cellular damage and promoted proliferation at 20–80 mM; 40 mM presented the optimal effect. Higher concentrations (100 mM) of niacin resulted in low cell viability. Subsequent experiments confirmed that 120 mM butyrate increased intracellular reactive oxygen species (ROS) production and reduced the intracellular total antioxidant capacity (T-AOC) versus the untreated control. Compared with 120 mM butyrate, cotreatment with 40 mM niacin significantly reduced the intracellular ROS content and increased the intracellular T-AOC. Flow cytometry analysis revealed that 120 mM butyrate increased the proportion of apoptotic cells by 17.8% versus the untreated control, and 120 mM butyrate+40 mM niacin treatment reduced the proportion of apoptotic cells by 28.6% and 39.4% versus the untreated control and butyrate treatment, respectively. Treatment with 120 mM butyrate increased caspase-9 and p53 mRNA levels and decreased the expression of Bcl-2 and Bax, and the Bcl-2/Bax ratio versus the untreated control. Treatment with 120 mM butyrate+40 mM niacin downregulated the expression of caspase-3 and p53 and increased the expression of Bcl-2 and Bax versus butyrate treatment alone but had no effect on the Bcl-2/Bax ratio. Thus, high concentrations of butyrate may induce rumen epithelial cell apoptosis by increasing oxidative stress and inducing caspase-9 and p53 expression. Cotreatment with niacin regulates apoptosis-related gene expression by reducing intracellular ROS production and DNA damage and downregulating caspase-3 and p53 expressions to protect rumen epithelial cells against butyrate-induced apoptosis.

Funder

Jiangxi Modern Agricultural Scientific and Technology Cooperative Innovation Project

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3