Isolation and Characterization of an Adult Stem Cell Population from Human Epidural Fat

Author:

Al-Jezani Nedaa12,Cho Roger13,Masson Anand O.14,Lenehan Brian5,Krawetz Roman124ORCID,Lyons Frank G.3

Affiliation:

1. McCaig Institute for Bone and Joint Health, University of Calgary, Canada

2. Medical Science Graduate Program, University of Calgary, Canada

3. Division of Orthopaedic Surgery, Foothills Medical Centre, Calgary, Canada

4. Biomedical Engineering Graduate Program, University of Calgary, Canada

5. University Hospital Limerick and Mater Misericordiae University Hospital, Ireland

Abstract

Study Design. Isolation and characterization of human epidural fat (HEF) stem/progenitor cells. Objective. To identify a progenitor population within HEF and to determine if they meet the minimal criteria of a mesenchymal stem cell (MSC). Summary of Background Data. The biological function, if any, has yet to be determined for HEF. The presence of MSCs within HEF may indicate a regenerative potential within the HEF. Methods. HEF was isolated from 10 patients during elective spinal surgery. HEF cells were differentiated along osteo-, adipo-, and chondrogenic lineages, with differentiation analyzed via qPCR and histology. The cell surface receptor profile of HEF cells was examined by flow cytometry. HEF cells were also assayed through the collagen contraction assay. Prx1CreERT2GFP:R26RTdTomato MSC lineage-tracking mice were employed to identify EF MSCs in vivo. Results. HEF cell lines were obtained from all 10 patients in the study. Cells from 2/10 patients demonstrated full MSC potential, while cells from 6/10 patients demonstrated progenitor potential; 2/10 patients presented with cells that retained only adipogenic potential. HEF cells demonstrated MSC surface marker expression. All patient cell lines contracted collagen gels. A Prx1-positive population in mouse epidural fat that appeared to contribute to the dura of the spinal cord was observed in vivo. Conclusions. MSC and progenitor populations are present within HEF. MSCs were not identified in all patients examined in the current study. Furthermore, all patient lines demonstrated collagen contraction capacity, suggesting either a contaminating activated fibroblast population or HEF MSCs/progenitors also demonstrating a fibroblast-like phenotype. In vivo analysis suggests that these cell populations may contribute to the dura. Overall, these results suggest that cells within epidural fat may play a biological role within the local environment above providing a mechanical buffer.

Funder

Calgary Orthopaedic Research and Education Fund

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3