Affiliation:
1. Electrical Engineering Department, Punjab Engineering College (Deemed to Be University), Chandigarh, India
Abstract
A buck converter is a step-down switching regulator. Buck convertors are being widely used in industrial applications that rely on regulated output voltage under fluctuating input voltage. A buck convertor works in the following modes: (a) current-controlled or (b) voltage-controlled mode. But these convertors manifest several nonlinearites because of the switching operation. Hence, in order to generate a quality output of the convertor, the design of a controller becomes crucial. In this paper, the synthesis of a QFT-based robust controller and prefilter has been carried out for an uncertain buck converter with varying input voltage and varying load. The controller synthesis problem has been posed as an optimization problem, and metaheuristic algorithms have been used for obtaining the optimal gains for the QFT controller and prefilter. By doing this, the QFT synthesis can be carried out in a single step instead of following the sequential classical QFT process on Nichols charts and the need for the generation of templates and bounds has be eliminated. The designed 2-degree-of-freedom QFT control system offers a robust behavior and efficiently handles the parametric uncertainties. The robustness of the designed controller has been confirmed through simulation results for large input voltage and load fluctuations.
Subject
Computer Science Applications,General Engineering,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. QFT Approach to Robust Control of DC-DC Buck Converter;2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES);2022-12-14