Deterministic Epidemic Models for Ebola Infection with Time-Dependent Controls

Author:

Okyere Eric1ORCID,De-Graft Ankamah Johnson1ORCID,Hunkpe Anthony Kodzo1,Mensah Dorcas1

Affiliation:

1. Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana

Abstract

In this paper, we have studied epidemiological models for Ebola infection using nonlinear ordinary differential equations and optimal control theory. We considered optimal control analysis of SIR and SEIR models for the deadly Ebola infection using vaccination, treatment, and educational campaign as time-dependent control functions. We have applied indirect methods to study existing deterministic optimal control epidemic models for Ebola virus disease. These methods in optimal control are based on Hamiltonian function and Pontryagin’s maximum principle to construct adjoint equations and optimality systems. The forward-backward sweep numerical scheme with the fourth-order Runge–Kutta method is used to solve the optimality system for the various control strategies. From our numerical illustrations, we can conclude that effective educational campaigns and vaccination of susceptible individuals as well as effective treatments of infected individuals can help reduce the disease transmission.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3