In VitroStudies of Bacterial Cellulose and Magnetic Nanoparticles Smart Nanocomposites for Efficient Chronic Wounds Healing

Author:

Galateanu Bianca12ORCID,Bunea Mihaela-Cristina3,Stanescu Paul3,Vasile Eugenia4ORCID,Casarica Angela5,Iovu Horia3,Hermenean Anca2ORCID,Zaharia Catalin3,Costache Marieta1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania

2. Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania

3. Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania

4. Department of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania

5. National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania

Abstract

The quality of life of patients with chronic wounds can be extremely poor and, therefore, over the past decades, great efforts have been made to develop efficient strategies to improve the healing process and the social impact associated with these conditions. Cell based therapy, as a modern tissue engineering strategy, involves the design of 3D cell-scaffold bioconstructs obtained by preseeding drug loaded scaffolds with undifferentiated cells in order to achievein situfunctionalde novotissue. This paper reports on the development of bionanocomposites based on bacterial cellulose and magnetic nanoparticles (magnetite) for efficient chronic wounds healing. Composites were obtained directly in the cellulose bacterial culture medium by dispersing various amounts of magnetite nanoparticles during the biosynthesis process. After purification and drying, the membranes were characterized by Raman spectroscopy and X-ray diffraction to reveal the presence of magnetite within the bacterial cellulose matrix. Morphological investigation was employed through SEM and TEM analyses on bionanocomposites. The biocompatibility of these innovative materials was studied in relation to human adipose derived stem cells in terms of cellular morphology, viability, and proliferation as well as scaffolds cytotoxic potential.

Funder

European Social Fund

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3