Affiliation:
1. CBS International Business School, Brühl, Germany
2. Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences (ZHAW), Winterthur CH-8400, Switzerland
Abstract
Direct air capturing (DAC) is an energy demanding process for CO2-removal from air. Ongoing research focuses on the potential of indoor air as DAC-feed to profit from currently unused energetic synergies between DAC and the built environment. In this work, we investigated the performance of three different readily available, solid DAC-adsorbers under typical indoor environmental conditions of 16-25°C, 25-60% relative humidity (RH), and CO2-concentrations of less than 800 ppm above atmospheric concentrations. The measured mass-specific CO2-adsorption capacities of K2CO3-impregnated activated carbon, polyethylenimine-snow (PEI-snow), and polyethylenimine (PEI) on silica amount to
,
, and
, respectively. Among the three investigated adsorber materials, PEI on silica is the most promising candidate for DAC-applications as its synthesis is rather simple, the CO2-desorption is feasible at moderate conditions of about 80°C at 100 mbar, and the competing co-adsorption of water does not strongly affect the CO2-adsorption under the investigated experimental conditions.
Funder
Federal State of North Rhine-Westphalia
Subject
Public Health, Environmental and Occupational Health,Building and Construction,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献