Computational Technique for Crack Propagation Simulation in Viscoelastic Solid Propellant

Author:

Jiang Qiangqiang1,Lv Xuan2ORCID,Cui Huiru3ORCID,Ma Teng2

Affiliation:

1. College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China

2. System Design Institute of Hubei Aerospace Technology Academy, Wuhan 430040, China

3. College of Defense Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract

To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its corresponding topological operations are proposed step by step. Then, computational simulation implementation process is explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid propellant combined with the experimental findings.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference23 articles.

1. Solid propellant grain structural integrity analysis;H. W. Douglass,1973

2. Structural assessment of solid propellant grains;AGARD;AGARD Advisory,1997

3. Fracture analysis of linear viscoelastic materials using triangular enriched crack tip elements

4. Delayed failure — the Griffith problem for linearly viscoelastic materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3