Application of Deep Neural Network with Frequency Domain Filtering in the Field of Intrusion Detection

Author:

Wang Zhendong1,Li Jingfei1ORCID,Xu Zhenyu2,Yang Shuxin1,He Daojing3,Chan Sammy4

Affiliation:

1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

3. School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China

4. Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

Abstract

In the field of intrusion detection, existing deep learning algorithms have limited capability to effectively represent network data features, making it challenging to model the complex mapping relationship between network data and attack behavior. This limitation, in turn, impacts the detection accuracy of intrusion detection systems. To address this issue and further enhance detection accuracy, this paper proposes an algorithm called the Fourier Neural Network (FNN). The core of FNN consists of a Deep Fourier Neural Network Block (DFNNB), which is composed of a Hadamard Neural Network (HNN) and a Fourier Neural Network Layer (FNNL). In a DFNNB, the HNN is responsible for sampling the network intrusion data samples in different time domain spaces. The FNNL, on the other hand, performs a Fourier transform on the samples outputted by the HNN and maps them to the frequency domain space, followed by a filtering process. Finally, the data processed by filtering are transformed back to the time domain space for subsequent feature extraction work by the DFNNB. Additionally, to enhance the algorithm’s detection accuracy and filter out noise signals, this paper also introduces a High-energy Filtering Process (HFP), which eliminates noise signals from the data signal and reduces interference on the final detection result. Due to the ability of FNN to process network data in both the time domain space and the frequency domain space, it possesses a stronger capability in expressing data features. Finally, this paper conducts performance evaluations on the KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017 datasets. The results demonstrate that the proposed FNN-based IDS model achieves higher detection rates, lower false alarm rates, and better detection performance than classical deep learning and machine learning methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3