Shapelet Discovery by Lazy Time Series Classification

Author:

Zhang Wei1ORCID,Wang Zhihai1,Yuan Jidong1ORCID,Hao Shilei1

Affiliation:

1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Abstract

As a representation of discriminative features, the time series shapelet has recently received considerable research interest. However, most shapelet-based classification models evaluate the differential ability of the shapelet on the whole training dataset, neglecting characteristic information contained in each instance to be classified and the classwise feature frequency information. Hence, the computational complexity of feature extraction is high, and the interpretability is inadequate. To this end, the efficiency of shapelet discovery is improved through a lazy strategy fusing global and local similarities. In the prediction process, the strategy learns a specific evaluation dataset for each instance, and then the captured characteristics are directly used to progressively reduce the uncertainty of the predicted class label. Moreover, a shapelet coverage score is defined to calculate the discriminability of each time stamp for different classes. The experimental results show that the proposed method is competitive with the benchmark methods and provides insight into the discriminative features of each time series and each type in the data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference50 articles.

1. Identifying predictive multi-dimensional time series motifs: an application to severe weather prediction

2. Discovering malware with time series shapelets;O. Patri

3. Time Series Shapelet Classification Based Online Short-Term Voltage Stability Assessment

4. Wifi-based human identification via convex tensor shapelet learning;H. Zou

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Time Series Classification Techniques and Methods;2023 International Seminar on Application for Technology of Information and Communication (iSemantic);2023-09-16

2. ECG classification using multifractal detrended moving average cross-correlation analysis;International Journal of Modern Physics B;2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3