Enhanced Ant Colony Optimization with Dynamic Mutation and Ad Hoc Initialization for Improving the Design of TSK-Type Fuzzy System

Author:

Chen Chi-Chung1ORCID,Liu Yi-Ting1

Affiliation:

1. Department of Electrical Engineering, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan

Abstract

This paper proposes an enhanced ant colony optimization with dynamic mutation and ad hoc initialization, ACODM-I, for improving the accuracy of Takagi-Sugeno-Kang- (TSK-) type fuzzy systems design. Instead of the generic initialization usually used in most population-based algorithms, ACODM-I proposes an ad hoc application-specific initialization for generating the initial ant solutions to improve the accuracy of fuzzy system design. The generated initial ant solutions are iteratively improved by a new approach incorporating the dynamic mutation into the existing continuous ACO (ACOR). The introduced dynamic mutation balances the exploration ability and convergence rate by providing more diverse search directions in the early stage of optimization process. Application examples of two zero-order TSK-type fuzzy systems for dynamic plant tracking control and one first-order TSK-type fuzzy system for the prediction of the chaotic time series have been simulated to validate the proposed algorithm. Performance comparisons with ACOR and different advanced algorithms or neural-fuzzy models verify the superiority of the proposed algorithm. The effects on the design accuracy and convergence rate yielded by the proposed initialization and introduced dynamic mutation have also been discussed and verified in the simulations.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3