Research on the Evolution Mechanism of Congestion in the Entrances and Exits of Parking Facilities Based on the Improved Spatial Autoregressive Model

Author:

Yu Hongru1ORCID,Deng Shejun1ORCID,Lu Caoye1ORCID,Tang Yucheng12ORCID,Yu Shijun1ORCID,Liu Lu1ORCID,Ji Tao1ORCID

Affiliation:

1. College of Civil Science and Engineering, Yangzhou University, Yangzhou 225002, China

2. China Iconic Technology Company Limited, Hefei 230088, China

Abstract

The entrance and exit area of parking facilities has the characteristics of high concentration of urban traffic and prominent traffic intertwining phenomenon, which easily induces rapid congestion of mixed heterogeneous traffic at specific times and local locations and quickly spreads to the entire road section or even a larger area. In order to better understand the congestion distribution characteristics and propagation effects of access section of the parking entrance and exit from the mid and microperspective, a 5 m   lane width pixel grid is used to divide the frontage road research. It also proposes a spatially robust autoregressive model and complex network tools suitable for analysis of local traffic flow to analyze it. The results show that as spatial scale increases, the congestion propagation decreases sharply and spatial adjacency within the fourth order can account for more than 90% of the propagation; the frontage road to the entrance and exit is the place where the congestion first happens, and the congestion gradually attenuates as it propagates to the inner lane and the upstream of the road segments; the lateral congestion propagation attenuates faster, so the area affected by congestion is mainly distributed in the outermost lane. This paper can provide theoretical guidance for alleviating traffic congestion in the entrance and exit areas of parking facilities and has theoretical and empirical significance.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3