Affiliation:
1. Department of Biotechnology, University of Verona, 15 Strada Le Grazie, 37134 Verona, Italy
2. Department of Life Sciences and Reproduction, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy
Abstract
The emergence of antibiotic resistance in microbial pathogens requires the identification of new antibacterial drugs. The biosynthesis of methionine is an attractive target because of its central importance in cellular metabolism. Moreover, most of the steps in methionine biosynthesis pathway are absent in mammals, lowering the probability of unwanted side effects. Herein, detailed biochemical characterization of one enzyme required for methionine biosynthesis, a pyridoxal-5′-phosphate (PLP-) dependent C-S lyase fromCorynebacterium diphtheriae, a pathogenic bacterium that causes diphtheria, has been performed. We overexpressed the protein inE. coliand analyzed substrate specificity, pH dependence of steady state kinetic parameters, and ligand-induced spectral transitions of the protein. Structural comparison of the enzyme with cystalysin fromTreponema denticolaindicates a similarity in overall folding. We used site-directed mutagenesis to highlight the importance of active site residues Tyr55, Tyr114, and Arg351, analyzing the effects of amino acid replacement on catalytic properties of enzyme. Better understanding of the active site ofC. diphtheriaeC-S lyase and the determinants of substrate and reaction specificity from this work will facilitate the design of novel inhibitors as antibacterial therapeutics.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献