Mean Estimators Using Robust Quantile Regression and L-Moments’ Characteristics for Complete and Partial Auxiliary Information

Author:

Anas Malik Muhammad1,Huang Zhensheng1ORCID,Alilah David Anekeya2ORCID,Shafqat Ambreen1,Hussain Sajjad3

Affiliation:

1. Department of Statistics and Financial Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

2. Department of Mathematics, Masinde Muliro University of Science and Technology, Kakamega, Kenya

3. Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan

Abstract

Ratio type regression estimator is a prevalent and readily implemented heuristic under simple random sampling (SRS) and two-stage sampling for the estimation of population. But this existing method is based on the ordinary least square (OLS) regression coefficient which is not an effective approach in the presence outliers in the data. In this article, we proposed a class of estimators firstly for complete auxiliary information and, later on, for partial auxiliary information for the presence of outliers in the data. To address this problem, initially we presented a distinct class of estimators by introducing the characteristics of L-moments in the existing estimators. Later on, quantile regression estimators are defined as more robust in the presence of outliers. These techniques empowered the proposed estimators to handle the problem of outliers. To prove the better performance of the proposed estimators, numerical studies are carried out using R language. To calculate the mean square error (MSE), hypothetical equations are expressed for adapted and proposed estimators. Percentage Relative Efficiencies (PRE) are compared to justify the proposed estimators.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3