Sphingosine Kinase 1 Plays an Important Role in Atorvastatin-Mediated Anti-Inflammatory Effect against Acute Lung Injury

Author:

Wu Lan12ORCID,Cheng Yan3,Peng Shunxiang3,Zhang Wensheng3ORCID,Zhang Chaoxiong45

Affiliation:

1. Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041 Sichuan Province, China

2. Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041 Sichuan Province, China

3. Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province, China

4. Department of Center for Disease Prevention and Control, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, 610041, China

5. Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA

Abstract

Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) inhibitor and inhibits cholesterol synthesis. Recently, atorvastatin also showed anti-inflammatory effect in acute lung injury, ameliorating pulmonary gas-blood exchanging function. Sphingosine kinase 1 plays a central role in endothelial (EC) cytoskeleton rearrangement and EC barrier integrity regulation. In this study, the role of sphingosine kinase 1 in atorvastatin anti-inflammatory effect against acute lung injury was investigated. Both wild-type (WT) and SphK1-/- mice were challenged with high tidal volume ventilation (40 ml/kg body weight, 65 breathing/min, 4 hours). The acute lung injury was evaluated and the mechanisms were explored. In WT mice, atorvastatin treatment significantly decreased acute lung injury responding to high tidal volume ventilation (HT), including protein, cellular infiltration, and cytokine releasing; comparing to WT mice, SphK1-/- mice showed significantly worsen pulmonary injuries on HT model. Moreover, the atorvastatin-mediated anti-inflammatory effect was diminished in SphK1-/- mice. To further confirm the role of SphK1 in VILI, we then compared the inflammatory response of endothelial cells that were isolated from WT and SphK1-/- mice to cyclic stretching. Similarly, atorvastatin significantly decreased cytokine generation from WT EC responding to cyclic stretching. Atorvastatin also significantly preserved endothelial junction integrity in WT EC against thrombin challenge. However, the inhibitory effect of atorvastatin on cytokine generation induced by cyclic stretching was abolished on SphK1-/- mice EC. The endothelial junction integrity effects of atorvastatin also diminished on SphK1-/- mouse EC. Signal analysis indicated that atorvastatin inhibited JNK activation induced by cyclic stretch. SphK1 knockout also blocked atorvastatin-mediated VE-cadherin junction enhancement. In summary, by inhibition of MAPK activity and maintenance of EC junction homeostasis, SphK1 plays a critical role in atorvastatin-mediated anti-inflammatory effects in both cellular and in vivo model. This study also offers an insight into mechanical stress-mediated acute lung injury and potential therapy in the future.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3