Stability and Hopf Bifurcation Analysis of an Oncolytic Virus Infection Model with Two Time Delays and Saturation Incidence

Author:

Liu Xia1,Hu Zhixing1ORCID

Affiliation:

1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In this paper, we study a model of oncolytic virus infection with two time delays, one of which is the time from the entry of viruses into tumor cells to start gene replication, and the other is the time from the entry of viruses into tumor cells to release new virus particles by infected tumor cells. In previous studies on oncolytic virus infection models, the infection rate was linear. Combined with the virus infection models, the saturated infection rate, β T V / 1 + q V is further considered to describe the dynamic evolution between viruses and tumor cells more objectively so as to further study the therapeutic effect of oncolytic viruses. This paper discusses the dynamics of the system under three conditions: (1) τ 1 = τ 2 = 0 , (2) τ 1 = 0 and τ 2 > 0 , and (3) τ 1 > 0 and τ 2 > 0 , and proves the global stability and local stability of the virusfree equilibrium, the stability of the infection equilibrium, and the existence of Hopf bifurcation. Finally, the conclusions of the paper are verified by MATLAB numerical simulations.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3