Analysis and Prevention and Control System of Domino Accident Risk Data in Chemical Parks Based on Topological Neural Network

Author:

Sun Lanhui12ORCID,Cheng Feng3,Wang Jing1

Affiliation:

1. China University of Geosciences, Wuhan, Hubei 430074, China

2. Henan University of Urban Construction, Pingdingshan, Henan 467036, China

3. Power China Hubei Engineering Co., Ltd., Wuhan, Hubei 430040, China

Abstract

A topologically based neural network algorithm is used to conduct an in-depth study and analysis of domino accident risk data in chemical parks, and this is used to construct a prevention and control system applied to the safety prediction of chemical parks. Firstly, the operating model of the flue gas turbine is expanded and analyzed according to the basic theory of topology, and the object element model is constructed to determine the feature vector and potential risk level. Then, the idea of differential evolution is introduced into the topological neural network to solve the problem that the learning rate and weighting coefficients are difficult to determine, and then the complete DE-ENN algorithm is proposed and tested with the UCI standard data set to verify the effectiveness of the algorithm. Finally, the algorithm is applied to the potential risk identification of the smoke machine operation model, and the experimental results show that the method not only has a simple structure, short running time, and high prediction accuracy but also has excellent generalization ability. For the inherent risk and domino effect risk of chemical equipment in chemical fiber enterprises, the accident risk assessment method based on the protection layer analysis method is proposed; combined with the probability of domino accident and personnel vulnerability model based on the comprehensive analysis of the research results of the allowable risk standard, the allowable risk standard applicable to chemical fiber production enterprises in China is proposed. Given the potential accident risk characteristics of chemical fiber production enterprises, the calculation method of firefighting demand and firefighting capacity of firefighting system is given; the index system of firefighting system emergency response capacity assessment is constructed from three aspects of firefighting system integrity, reliability, and effectiveness, and the assessment model and grade classification standard of firefighting emergency response capacity of chemical fiber production enterprises are determined.

Funder

China University of Geosciences

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3