Damage Identification in Bars with a Wave Propagation Approach: Performance Comparison of Five Hybrid Optimization Methods

Author:

Tenenbaum R.A.1,Stutz L.T.1,Fernandes K.M.2

Affiliation:

1. Graduate Program in Computational Modeling, Polytechnic Institute, State University of Rio de Janeiro, Nova Friburgo, RJ, Brazil

2. Instituto de Ciências Ambientais e Desenvolvimento Sustentável, Federal University of Bahia, Salvador, Brazil

Abstract

The formulation and solution of the inverse problem of damage identification based on an one-dimensional wave propagation approach are presented in this paper. Time history responses, obtained from pulse-echo synthetic experiments, are used to damage identification. The identification process is built on the minimization of the squared residue between the synthetic experimental echo, obtained by using a sequential algebraic algorithm, and the corresponding analytical one. Five different hybrid optimization methods are investigated. The hybridization is performed combining the deterministic Levenberg-Marquardt method and each one of the following stochastic techniques: The Particle Swarm Optimization; the Luus-Jaakola optimization method; the Simulated Annealing method; the Particle Collision method; and a Genetic Algorithm. A performance comparison of the five hybrid techniques is presented. Different damage scenarios are considered and, in order to account for noise corrupted data, signals with 10 dB of signal to noise ratio are also considered. It is shown that the damage identification procedure built on the Sequential Algebraic Algorithm yielded to very fast and successful solutions. In the performance comparison, it is also shown that the hybrid technique combining the Luus-Jaakola and the Levenberg-Marquardt optimization methods provides the faster damage recovery.

Funder

Brazilian National Council for Scientific and Technological Development

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3