Affiliation:
1. School of Mathematical Sciences, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
2. Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
Abstract
An electrocardiogram (ECG) records the electrical activity of the heart; it contains rich pathological information on cardiovascular diseases, such as arrhythmia. However, it is difficult to visually analyze ECG signals due to their complexity and nonlinearity. The wavelet scattering transform can generate translation-invariant and deformation-stable representations of ECG signals through cascades of wavelet convolutions with nonlinear modulus and averaging operators. We proposed a novel approach using wavelet scattering transform to automatically classify four categories of arrhythmia ECG heartbeats, namely, nonectopic (N), supraventricular ectopic (S), ventricular ectopic (V), and fusion (F) beats. In this study, the wavelet scattering transform extracted 8 time windows from each ECG heartbeat. Two dimensionality reduction methods, principal component analysis (PCA) and time window selection, were applied on the 8 time windows. These processed features were fed to the neural network (NN), probabilistic neural network (PNN), and k-nearest neighbour (KNN) classifiers for classification. The 4th time window in combination with KNN (k=4) has achieved the optimal performance with an averaged accuracy, positive predictive value, sensitivity, and specificity of 99.3%, 99.6%, 99.5%, and 98.8%, respectively, using tenfold cross-validation. Thus, our proposed model is capable of highly accurate arrhythmia classification and will provide assistance to physicians in ECG interpretation.
Funder
People’s Livelihood Science and Technology Project of Qingdao
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献