Correlation between the Photocatalytic Degradability of PAHs over Pt/TiO2-SiO2in Water and Their Quantitative Molecular Structure

Author:

Luo Zhao-hui1,Wei Chuan-ling1,He Nan-nan1,Sun Zhi-guo1,Li Hui-xin1,Chen Dan2ORCID

Affiliation:

1. College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China

2. Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

The correlation between the photocatalytic degradability of polycyclic aromatic hydrocarbons (PAHs) over Pt/TiO2-SiO2in water and their quantitative molecular structure was studied. Six PAHs, namely, naphthalene, fluorene, phenanthrene, pyrene, benzo[a]pyrene, and dibenzo[a,h]anthracene, were tested in Pt/TiO2-SiO2suspension under UV irradiation. The results showed that the degradation efficiencies of the higher molecular weight PAHs were enhanced significantly in the presence of Pt/TiO2-SiO2, while the degradation efficiencies of the lower molecular weight PAHs were decreased in the presence of Pt/TiO2-SiO2. Both the photolysis and photocatalysis of all PAHs fit the pseudo-first-order equation very well, except FL. Quantitative analysis of molecular descriptors of energy of the highest occupied molecular orbital (Ehomo), energy of the lowest unoccupied molecular orbital (Elumo), and the difference betweenElumoandEhomo, GAP (GAP=Elumo-Ehomo), suggested that the GAP was significant for predicting a PAHs’ photocatalytic degradability. Through comparison against the maximum GAP (7.4529 eV) of PAHs (dibenzo[a,h]anthracene) that could be photocatalytically degraded and the minimum GAP (8.2086 eV) of PAHs (pyrene) that could not be photocatalytically degraded in this study, the photocatalytic degradability of 67 PAHs was predicted. The predictions were partly verified by experimental photocatalytic degradation of anthracene and Indeno[1.2.3.cd]pyrene.

Funder

Nanjing Agricultural University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3