Channel Estimation Performance Analysis of FBMC/OQAM Systems with Bayesian Approach for 5G-Enabled IoT Applications

Author:

Wang Han12ORCID,Du Wencai2ORCID,Wang Xianpeng3,Yu Guicai1,Xu Lingwei4ORCID

Affiliation:

1. College of Physical Science and Engineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China

2. Institute of Data Science, City University of Macau, Avenida Padretomas Pereira, Taipa, Macau 999078, China

3. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China

4. Department of Information Science and Technology, Qingdao University of Science and Technology, 99 Songling Road, Qingdao, Shandong 266061, China

Abstract

A filter bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) (FBMC/OQAM) is considered to be one of the physical layer technologies in future communication systems, and it is also a wireless transmission technology that supports the applications of Internet of Things (IoT). However, efficient channel parameter estimation is one of the difficulties in realization of highly available FBMC systems. In this paper, the Bayesian compressive sensing (BCS) channel estimation approach for FBMC/OQAM systems is investigated and the performance in a multiple-input multiple-output (MIMO) scenario is also analyzed. An iterative fast Bayesian matching pursuit algorithm is proposed for high channel estimation. Bayesian channel estimation is first presented by exploring the prior statistical information of a sparse channel model. It is indicated that the BCS channel estimation scheme can effectively estimate the channel impulse response. Then, a modified FBMP algorithm is proposed by optimizing the iterative termination conditions. The simulation results indicate that the proposed method provides better mean square error (MSE) and bit error rate (BER) performance than conventional compressive sensing methods.

Funder

Macau Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3