Rotated Black Hole: A New Heuristic Optimization for Reducing Localization Error of WSN in 3D Terrain

Author:

Chai Qing-Wei1ORCID,Zheng Jerry Wangtao2ORCID

Affiliation:

1. Qing-Wei Chai College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Weinberg College of Arts and Sciences, Northwestern University, USA

Abstract

Wireless sensor network (WSN) attracts the attention of more and more researchers, and it is applied in more and more environment. The localization information is one of the most important information in WSN. This paper proposed a novel algorithm called the rotated black hole (RBH) algorithm, which introduces a rotated optimal path and greatly improves the global search ability of the original black hole (BH) algorithm. Then, the novel algorithm is applied in reducing the localization error of WSN in 3D terrain. CEC 2013 test suit is used to verify the performance of the novel algorithm, and the simulation results show that the novel algorithm has better search performance than other famous intelligence computing algorithms. The localization simulation experiment results reveal that the novel algorithm also has an excellent performance in solving practical problems. WSN localization 3D terrain intelligence computing rotated the black hole algorithm.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference59 articles.

1. A survey on sensor networks

2. Energy-aware location error handling for object tracking applications in wireless sensor networks

3. A survey on intelligent sensor network and its applications;F.-C. Chang;Journal of Network Intelligence,2016

4. Adaptive distance estimation and localization in wsn using rssi measures;A. Awad

5. A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3