A Fault Diagnosis Method for Out-of-Round Faults of Metro Vehicle Wheels with Strong Noise

Author:

Huang Haifeng1ORCID,Wang Heli2ORCID,Zhang Weijiu3,Gu Weijie1ORCID

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Patent Examination Cooperation Sichuan Center of the Patent Office, China National Intellectual Property Administration, Chengdu 610213, China

3. Wuhan Metro Operation Co., Ltd., Qiaokou District, Wuhan 430000, China

Abstract

Detection of out-of round (OOR) faults of metro vehicle wheels is very important to improve stationarity and stability in metro vehicles and avoid accidents caused by OOR faults. Diagnosis of OOR faults demands extracting useful information accurately from mass of vibration signals with poor signal-to-noise ratio (SNR) of metro vehicle wheels for complex running condition. In this paper, we proposed a diagnosis method on OOR faults of metro vehicle wheels combined with variational mode decomposition (VMD), kernel principal component analysis (KPCA), and deep belief network (DBN) to diagnose the OOR faults of metro wheels. Vibration signals of China metro vehicle wheels collected while the metro vehicle is running are used to train the diagnosis model and adjust parameters of DBN and KPCA based on testing accuracy. The different dimensions of KPCA, epoch number, and node number of DBN are compared, and the better parameters of diagnosis model based on vibration signals are concluded in this paper. The generalization of the diagnosis model is checked nine times by testing the calculation of each group of parameters and using an error declining process. The mean accuracy of diagnosis model proposed in this paper is 0.9136, and the diagnosis model presented in this paper is very significant to detect OOR faults online.

Funder

Science and Technology Plan Project of Sichuan

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3