Impact of Different Electrolytes on the Machining Rate in ECM Process

Author:

Saravanan K. G.1ORCID,Prabu R.2ORCID,Venkataramanan A. R.1ORCID,Beyessa Eden Tekle3ORCID

Affiliation:

1. Department of Mechanical Engineering, Sona College of Technology, Salem, Tamil Nadu, India

2. Department of Mechanical Engineering, Mahendra Engineering College, Namakkal, Tamil Nadu, India

3. School of Biomedical Engineering,Jimma Institute of Technology, Jimma University, Jimma, Oromia, Ethiopia

Abstract

Electrochemical machining is a nonconventional machining process in which the metal removal is achieved by the electricity and chemical solution known as an electrolyte. It is the reverse electrolysis process where the application of electricity facilitates the current travel in between anode and cathode. The mechanism of the ion movement is similar to the electrolysis process. Electrochemical machining (ECM) is a type of advanced machining process which employs electricity to perform the machining process on the workpiece. It is also known as a reverse electroplating process where metal removal is achieved instead of metal deposition on the metal surface. There are various parameters that affect the metal removal process in the ECM process, such as electrolyte, power supply, workpiece material, and tool material. The electrolyte is one of the key factors impacting the machining rate, surface finish, and reliability of the produced parts. In this project, a brief study is carried out regarding the electrochemical process and the electrolytes where the properties, functions, merits, and demerits are evaluated. The impact of the various electrolytes and their suitability for machining of various metals is also discussed. The findings of the effect produced by using the mixture of the electrolyte in the electrochemical machining process are discussed in this project. The effects of the complexing agents on the electrolyte and the electrochemical process as a whole are also reviewed.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3