Affiliation:
1. Hebei Engineering Research Center of Simulation & Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China
Abstract
This paper presents a fuzzy clustering method based on multiobjective genetic algorithm. The ADNSGA2-FCM algorithm was developed to solve the clustering problem by combining the fuzzy clustering algorithm (FCM) with the multiobjective genetic algorithm (NSGA-II) and introducing an adaptive mechanism. The algorithm does not need to give the number of clusters in advance. After the number of initial clusters and the center coordinates are given randomly, the optimal solution set is found by the multiobjective evolutionary algorithm. After determining the optimal number of clusters by majority vote method, the Jm value is continuously optimized through the combination of Canonical Genetic Algorithm and FCM, and finally the best clustering result is obtained. By using standard UCI dataset verification and comparing with existing single-objective and multiobjective clustering algorithms, the effectiveness of this method is proved.
Funder
National Natural Fund of China
Subject
General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献