Affiliation:
1. School of Computer Science and Engineering, Southeast University, Nanjing, China
Abstract
For intrusion detection, it is increasingly important to detect the suspicious entities and potential threats. In this paper, we introduce the identification technologies of network entities to detect the potential intruders. However, traditional entities identification technologies based on the MAC address, IP address, or other explicit identifiers can be deactivated if the identifier is hidden or tampered. Meanwhile, the existing fingerprinting technology is also restricted by its limited performance and excessive time lapse. In order to realize entities identification in high-speed network environment, PFQ kernel module and Storm are used for high-speed packet capture and online traffic analysis, respectively. On this basis, a novel device fingerprinting technology based on runtime environment analysis is proposed, which employs logistic regression to implement online identification with a sliding window mechanism, reaching a recognition accuracy of 77.03% over a 60-minute period. In order to realize cross-device user identification, Web access records, domain names in DNS responses, and HTTP User-Agent information are extracted to constitute user behavioral fingerprints for online identification with Multinomial Naive Bayes model. When the minimum effective feature dimension is set to 9, it takes only 5 minutes to reach an accuracy of 79.51%. Performance test results show that the proposed methods can support over 10Gbps traffic capture and online analysis, and the system architecture is justified in practice because of its practicability and extensibility.
Funder
National Key R&D Program of China
Subject
Computer Networks and Communications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An approach to detect user behaviour anomalies within identity federations;Computers & Security;2021-09
2. Position paper;Proceedings of the 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things;2020-11-16