An Adaptive Energy-Management Framework for Sensor Nodes with Constrained Energy Scavenging Profiles

Author:

Silva Agnelo R.1,Liu Mingyan2,Moghaddam Mahta1

Affiliation:

1. EE-Electrophysics, University of Southern California, Los Angeles, CA, USA

2. EECS Department, University of Michigan, Ann Arbor, MI, USA

Abstract

Modern energy harvesting systems for WSNs involve power scavenging sources, rechargeable batteries, and supercapacitors. Typical energy-management systems calculate/predict the remaining energy stored in a node, and associated actions are dispatched involving the networking protocols. However, long-term characteristics of the mentioned hardware components are typically neglected preventing the achievement of very long maintenance-free lifetimes (e.g., >5 years) for the nodes. In this work, a systematic analysis of this problem is provided, and an open energy-management framework is proposed which promotes (a) the nontraditional combination of primary cells, supercapacitors, and harvesting systems, (b) the concept of a distributed system inside a node, and (c) the adoption of the dual duty-cycle (DDC) operation for the WSNs. The DDC's core component is a cross-layer protocol implemented as an application-layer overlay which maintains the operation of the network under very high energy efficiency. Its trade-off is the reduction of the network throughput. Therefore, the DDC system has mechanisms that dynamically switch the WSN operational mode according to application's needs. Detailed guidelines are provided in order to allow the implementation of the solution on existing WSN platforms. The energy efficiency of the low duty-cycle mode of the solution is demonstrated by simulated and empirical results.

Funder

University of Southern California

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPCTOR: Sensing Policy Controller and Optimizer;IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium;2020-09-26

2. Wireless M-Bus Sensor Networks for Smart Water Grids: Analysis and Results;International Journal of Distributed Sensor Networks;2014-06-01

3. Cooperative Transmission Mechanisms in Next Generation WiFi: IEEE 802.11ac;International Journal of Distributed Sensor Networks;2013-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3