Affiliation:
1. Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
2. Department of Mechanical Engineering, The University of Sheffield, Sir Frederick Mappin Building, Sheffield S1 3JD, UK
Abstract
This paper reports the preliminary results on the morphology of low porosity hydroxyapatite scaffold and its compatibility as a substrate for osteoblast cells. Although having low porosity, the hydroxyapatite scaffold was found to be capable of sustaining cell growth and thus assisting bone ingrowth. Due to the low porosity nature, the scaffold provides higher strength and therefore more suitable for applications with load-bearing requirements such as spinal spacer. The hydroxyapatite scaffolds are prepared via powder processing techniques, using a combination of wet mixing, powder compaction, and sintering processes. The scaffold porosity is estimated via image analysis and micro-CT, which detect porosity level of approximately 16% and pore size of 13 μm. Cell culture investigation demonstrates that the hydroxyapatite substrate is able to provide favourable cell attachment and collagen matrix production, as compared to the commonly used cell culture control substrates. These results indicate that despite the low porosity in the hydroxyapatite scaffolds, they do not hinder being a preferred substrate to provide conducive environment osteoblast cell growth.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献